Code No: 07A62101

Set No. 3

III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Flight Mechanics-II Aeronautical Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Derive an expression for the normal load factor of an airplane in a steady constant speed, constant angular rate pull up maneuver in a vertical loop when the airplane is at a flight path angle γ in the loop.
 - (b) An airplane of mass 1.5 tonnes, flying at 250 kmph pulls up in a vertical circular loop of radius 1.2 km. What is the lift required for this maneuver of the airplane while at a flight path angle $\gamma = 60$ degrees to the horizontal?

[8+8]

- 2. Write a typical Transfer Function for an aircraft and explain. How is it useful in explaining the behaviour of the aircraft for a disturbance? [16]
- 3. Explain the aerodynamic forces on elevator stabilizer configuration in the stick free condition of an airplane. [16]
- 4. The location of the wing on the longitudinal axis of the fuselage is of considerable importance to its destabilizing influence. Multhopp proposed a formula to account for this phenomenon. What is that formula? Derive it with the support of sketches.
 [16]
- 5. Starting with the Z force equation, use the small disturbance theory to determine the linearized force equation. Assume a steady level flight for the reference flight conditions? [16]
- 6. (a) Compare the connentional airplane configuration with a canasol-wing-tail combination. Make use of suitable figures.
 - (b) Differentiate between swept-back and forward wing configurations. [8+8]
- 7. If the rudder angle δ_r required to produce the sideslip angle ψ is given by δ_r = (d δ_r / d ψ)ψ, derive the following equation for the expression for the rate of change of pedal force with the side slip angle, d PF / d ψ = [{ G q S_r c_r η_v C h, δ_r } / C n, δ_r] (C n, ψ) Free
- 8. Explain in detail, with sketches, the functioning of the
 - (a) Trim tabs
 - (b) Servo tabs
 - (c) Balance tabs
 - (d) Spring tabs .

[4+4+4+4]

[16]
